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ABSTRACT

Equations of motion are derived for the transient response, to

shock wave, of a submerged shell with internal structures. A substructuring

procedure, which does not require calculation of a system stiffness matrix , is

employed to obtain these equations in a general manner for arbitrary

internal structures approximated by finite elements.
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I INTRODUCTION

In an earlier paper (Ref. [1]), equations of motion for the transient

response, to a shock wave, of a submerged shell with internally attached

structures were obtained by a substructuring procedure. Several quantities

• in these equations, relating to the attachments, were only broadly defined ,

and determined in detail only in an ad hoc manner for specific appendages.

In this report, matrix expressions for these quantities are defined which

permit their computation for arbitrary internal structures approximated by

finite elements.

The present report addresses the same basic problem as Ref. [1], but

does not consider the details of the fluid loading on the shell, which may be

found in Ref. [1]. The effects of external loads applied to the internal

structures, which were not considered in Ref. [1], are included here.

The substructuring procedure described herein is intended for use in

transient response problems. Unlike many other substructuring schemes, which

are used primarily to solve steady—state problems (see, e.g., Ref. [2]), the

present method does not involve the modes and natural frequencies of the combined

system (shell and appendages). In addition , a system stiffness matrix is not

required, since the present technique employs the interaction forces and

moments at the junctions of the shell and the attached structures .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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II GENERAL KINEMATICS

Consider a shell S of arbitrary geometry (see Fig. 1). Let n, 2 and 3

denote mutually perpendicular directions, respectively normal and tangent to

the middle surface of the shell. If d , d
2 and d3 denote corresponding

displacement components of this surface, a 3 by 1 displacement matrix d(s, t)

may be defined , in which s denotes an arbitrary point on the middle surface,

t is time, and underlining indicates a matrix; d
n 
is assumed positive inward .

Corresponding to this displacement matrix , the 3 by 1 jth shell mode ~ .(s)

n 2 3
has components and with which are associated a natural frequency

w. and a generalized mass

I Ti~ = j  m~~~~~~dA (1)

A

in which m denotes the mass per unit of surface area A of the middle surface

of the shell and the superscript T denotes a transpose . The shell modes,

which satisfy the orthogonality condition

J m ~~~~~. dA~ .O if k~~~j (2)

may be used as expansion functions for the shell displacements , i.e.,

V
S

d(s, t) = ~ q5~ (t) ~~~~ 
(3)

k= 1

in which the ~~~~(t) are generalized coordinates for the shell and V~ is

the number of modes of the shell considered .

Assume that an elastic structure a, entirely within the shell S, is attached

to S at points s1(I = 1, 2,..., NA), as shown in Fig. 2. Let a be approximated

by finite elements with interface (attached) nodal points I, coinciding with

• 
~~~
‘ and interior (unattached) nodal points ct(ct 1, 2,. ..,Nu), corresponding

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•——•~-~~~~~—~~~~~~~~~~~~~ •~~~~~~~~~~~
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to material points of a not in contact with S. The finite element representation

of a is assumed to include rotational degrees of freedom.

At each interface point I, certain components of displacement and/or

rotation of a must match corresponding quantities of S, depending on the

type of 8upport. Thus, at an interface point I, define the vector

= [~1 
(4)

where the upper partition , an N
1 
by 1 matrix , contains those physical degrees

of freedom of a which must match corresponding physical degrees of freedom of

S, and the lower partition, an N1 
by 1 matrix, contains the remaining physical

*)degrees of freedom of a active at interface point I.

Since the interior points of a are not connected to S, define the vector

of physical degrees of freedom of a at an interior point a as

xU x (5)
-‘aa —oa

It may be observed in Eqs. (4) and (5), and in what follows, that the symbol —

above a quantity indicates a quantity associated with physical degrees of

freedom of a constrained to move with S, while the symbol above a quantity

indicates a quantity associated with physical degrees of freedom of a not

At a simple support , e.g., the displacements of a and S must be equal,
but the rotations ofa and S are not equal. Thus, assuming two active
physical degrees of freedom, the displacement of a is located in the
upper partition of Eq. (4), and the rotation of a is located in the
lower partition of Eq. (4).
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constrained to move with S.

If the appropriate definitions of Eqs. (4) and (5) are applied to all

nodal points of a, the physical degrees of freedom of a may be arranged in

the form I - a
x = (6)

I x
L °

in which the upper partition , an N by 1 matrix, contains the terms from

all interface points [Eq. (4)] and the lower partition , an N by 1 matrix ,

contains the terms from all interface points [Eq. (4)J and the

terms from all interior points [Eq. (5)].

In the sequel, the elements in the upper partition of Eq. (6) will be

referred to as “constrained physical degrees of freedom of a”, while the

elements in the lower partition will be referred to as “unconstrained physical

degrees of freedom of a”. The matrix has size N by 1, where

N = N + N (7)

is the total number of active physical degrees o.f freedom of a.

From Eq. (3), the shell displacements at an interface point I may be

written as

V
S

t) 
~ I 

= 

k=l 
q
5~
(t) 

~k
(s
I
) (8)

where is a 3 by matrix with elements ~~ (s
1
) and is a V5 by 1 matrix

containing the generalized ~‘oordinates of the shell. Similarly, the rotations

• of the shell cross section at an interface point I may be expressed as

• 
V

St -~I k—l 
~~~(t) q~~(s1

) 
~~ ~~

_ _ _IL - ~~. -- a 2.. 
-
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in which 
~~~~~~ 

denotes the 3 by 1 matrix of rotations about the n, 2 and 3

axes in the mode and is a 3 by V~ matrix with elements

Continuity of appropriate components of displacement and rotation of

shell and substructure at an interface point I requires that

r~11
= D~ (10)

where D
1
, an N

1 
by 6 matrix , is a local rotational coordinate transformation

which transforms quantities expressed in the S—coordinate system into the

a—coordinate system. Each row of contains at most three non—zero terms.*)

Use of Eqs. (8) and (9) permits Eq. (10) to be written in the form

(11)

where C
1 
is an N

1 by v~ matrix given by

r~’i
~ l---—— I (12)

I

Application of Eq. (11) to all interface points, with reference to Eq. (6)

• for proper ordering , permits the continuity between shell and substructure

to be written as

(13)

in which C is an N by v~ matrix having the form

The coordinate transformation array in Eq. (10) is used for convenience
in presentation. Actually, only a 3 by 3 coordinate transformation array
is required at each interface point, the rows of this array applying to
both displacements and rotations. 

..~~~~~~~~~~ -.~~~•-- •
-
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~~~
= (14)

Equation (13) expresses the constrained physical degrees of freedom of a in

*)terms of the free—free modes of S.

As suggested in Ref. f3J , the response of a may be taken as the super-

position of its static response to the actual motion of its supports and

the dynamic response with respect to fixed supports, i.e.

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(15)

In Eq. (15), is the N by V
0 

fixed modal matrix , where V
0 

denotes the

number of fixed—base modes, and is the V
0 

by 1 matrtx of corresponding

generalized coordinates. The N by N matrix ~ is obtained by considering

the static response of a to an arbitrary support motion (support “settlement ”)

when the nodal loads corresponding to the unconstrained physical degrees of

freedom vanish. In such a case, Eq. (15) becomes

~-~a~static 
= 

~ Q~static 
(16)

*) Equation (13) replaces Eq. (5) of Ref. [1]:

t)  = d(s., t)

Equation (15) replaces Eq. (4) of Ref. [1]:

4~(s, t) = 
~ q01(t) ~~~(s) + £(s, t)

-~ —“ _________ 
~~~~~~~~~~ 
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As shown in Ref. [2], the matrix g (sometimes termed the “constraint

modes”) may be obtained by considering the linear static “force—displacement”

relation for a:

1
~~ a~statjc 

= R (17)

in which K is the N by N unconstrained stiffness matrix for the substructure

and R is the corresponding vector of nodal forces and moments. For the

determination of g, Eq. (17) may be partitioned to correspond to Eq. (6),

yielding

rk 1i ~~121 r~~iI——— — — - f -—— — —— l I —— z——— I = I (18)

L~
21

~~~ 22] L~ J _~i
static

since the only nodal loads are the reactions . It then follows from the lower

partition of Eq. (18) that

~~a~static 
= 

~~ 2 ~ 21 ~~o~ sta t1c (19)

where the superscript —1 indicates an inverse. A comparison of Eqs. (19)

and (16) shows that

A — 1
= 

~ 22 ~21 (20)

Thus, the elements of £ are the static displacements and rotations (including

rigid—body motion), corresponding to the unconstrained physical degrees of

freedom of 0 , which result from successive unit displacements and rotations ,

corresponding to the constrained physical degrees of freedom of a, at

attachment points I when all other constrained physical degrees of freedom

of a are set equal to zero.

The use of Eq. (13) permits Eq. (15) to be written as

(21)

__________________________ - 
,
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As suggested in Ref. f2], Eqs. (13) and (21) may be combined into the sing le

matrix equation

X T C 
(22)

in which X is given by Eq. (6), the transformation matrix TC has the form

= i 4 I i.23 )L ic: i0]
and the array of generalized coordinates is given by

Hsl
( 24)

~a]

In Eq. (22), X is an N by 1 matrix , ~ is a V b y 1 matrix , with

V = V ~~~+ V  (25)

and TC is an N by V matrix. Equation (22) may be written in subscri pt

notation as

Xak 
= 

•~~~~~ 

T~ . q. (k = 1, 2 , . . . ,  N) (26)

L
—~~~~~~ •-~~ ~~~~-~ - -~ -.~~~-- 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ •~_•~•_ -—--—-~~~~~— —~~~~~ —--- - •- — — - . .  —
——---‘.•
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•
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III EQUATIONS OF MOTION OF SHELL

The kinetic and potentia l energies of the combination of shell S and

internal structure a may be written as

V S N
T = 2 j=l 

~~~~~~~ + 

~ 

M~ X~~ (27)

V
S N N

V = -

~~ ~~~~~~ 
j j Sj 

÷ K
ik 

X
01 

Xak (28)

in which the X~~ are given by Eq. (26), the K ik are the elements of the

partitioned stiffness matrix of Eqs. (17) and (18), and th~ M . are the

elements of the partitioned mass matrix of a from an assumed lumped mass

formulation . The mass matrix must be partitioned to correspond to Eq. (6),

i.e., r~11

~ I .~. (29)

~22J

where the upper left partition , an N by ~ matrix , and the lower right

partition , an N by N matrix , are diagonal.

The equations of motion of the shell may be derived from Lagrange ’s

equations:

+ 
~~~ 

+ (j  = l,2 ,...,V 5) (30)

If Eq. (26) is substituted into Eqs. (27) and (28), one obtains the
equations which replace Eqs. (6) and (7) of Ref. [1]:

T(45~~40
.) = -

~~ 

~ 
11
~
4
~ i 

÷ Ta(4oji~isj
)

~~~~~~ = + ~~~~~~~~~~~

I .
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in which the 
~~~ 

are the generalized forces corresponding to the total fluid

pressure 
~T 

acting on the surface of the shell (seL~ Fig. 1) and the Q5. are

the generalized forces from the action of 0 on S, exclusive of the contribution

derivable from the kinetic and potential energies. As shown in the Appendix ,

the Q . are the elements of the matrix
Sj

(31)

where R, an N by 1 matrix, is the vector of known applied nodal loads acting

on a (see Fig. 2).

It follows from Eqs. (26) and (24) that

— ~
X
ak C (] = 1, 2,...,

- - Tkj k = 1, 2,..., N) (32)

which may be seen to reference terms in the upper and lower lef t par tit ions

of Eq. (23). Thus, the use of Eqs. (27), (28), and (32) leads to

~ 
÷ 
k~1 

T~j 
M~ Xak 

(33)

= + 

k=l 
T~~. 

i~ l 
Kk. X0. 

(34)

The substitution of Eqs. (31), (33), and (34) into Eq. (30), with reference

to Eqs. (18), (23), and (29), results in

~
j ~sj 

+ 1Sj = 

~TJ 
- P~ (j 1 , 2,..., vs

) (35)

where thc P . are the elements of the vectorJ

P =  P + P  (36)

_ _ _ _ _ _ _ _  

____Lj
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whose addends are defined as

(37)

P _ C T
g.
T [ r n X + k X + k X _ R i  (38)

The bracketed term in Eq. (38) may be recognized as the physical

equations of motion of a. Hence, the contribution of Eq. (38) vanishes ,

and the equations of motion of S become

+ ~~~ q
51 

= 

~~~ 
+ Q0~

in which the generalized forces 
~a

• corresponding to the forces and moments

exerted by a on S, are

= - 

k=1 
C
kj
(
~~ 

Xak + ~~~ X~~ ) (40)

which result from the dynamic reactions

R k 
= _ (

~~~ 
X~~ + 

~~~ 
X

i
) (41)

exerted by a on S

Using Eqs. (22) to (24), the equations of motion of S may now be written

in the form

Equations (40) and (41) are generalizations of specifi c examples
given by Eqs. (17), (18); (22), (23); (Al), (A2); and (A12), (Al)),
(Al6) of Ref. [1].

_______________________________ ~~~~ ~~ -
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VS

k=l kj k 
+ 

~ 

C ..M .C .~ )q5~ 
+ 

~5j 
=

(42)

- 

~ 
C~~.F. (i = 1 , 2,..., V

s)

where 5 . is the Kronecker delta and the F , the elastic forces and moments
3k 1

exerted by a on S and vice—versa, are the elements of the N by 1 ma trix

• = (k~~1 
+ 

~ 12 ~ ~ 
÷ 

~ l2 Z~ 
(43 )

The effect of inertia forces appears in the double summation in Eq. (42)

It may be observed that the equations of motion of the shell have stiffness

coupling only between shell and substructure.

• In the equations of motion of the shell, the contributions of the inertia

forces and the elastic reactions of ~ on S may be given a simple physical

interpretation by referring to Fig. 3. Figure 3a shows an idealized fini te

element model of a substructure a attached to a shell 5, and Figs. 3b and 3c

show the manner in which Eqs. (42) and (43) treat the connection of a to S.

The effect of inertia forces results from the rig idl y attached point mass of

Fig. 3b , while the effect of the elastic reactions of a on S results from the

“spring force ” of Fig. 3c.

_ _____ _ 1. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ — -- -----—---—--- •- - -- —••---- -——
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IV EQUATIONS OF MOTION OF SUBSTRUCTURE

The equations of motion of the substructure a may be obtained from

Lagrange ’s equations :

+ = 

~aj (j = 1, 2,..., V
a

) (44)

in which the are the generalized forces corresponding to the known

applied nodal loads acting on a. As shown in the Appendix , the

• are the elements of the matrix

(45)

it follows from Eqs. (26) and (24) that

aXak ~~ak C (j = 1, 2 , . . . ,  V
a
;

= = Tk j +V~ k = 1, 2 , . . . , N) (46)

which may be seen to reference terms in the upper and lower right partitions

of Eq. (23). Since the upper right partition of Eq. (23) is a null matrix,

the use of Eqs. (27), (28), and (46) leads to

~~~~~~~ 1~akj Mk+j~ 
X k+~ 

(47)

~~aj 
= 

k=l ~~~ i=l 
Kk+~~i X~1 (48)

The substitution of Eqs. (45), (47), and (48) into Eq. (44) results in

k~l 
~~~~~~~~ 

X k+~ + 1=1 ~~~~~ 
X
ai 

- 
~~) = 0 (49)

which may be written in matrix form as

~~~~~ E Q j  
~22~ 
[4.

~~~~
+
~~~~~~21 1~~22 ’ [__

~
__] ~~~~~~ 

(50)

• — • - -~~~— ‘ ~~~~~~~~~~~~~~~~~~~~~ — ---.—.
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If Eqs. (22) to (24) are substituted into Eq. (50), and the matrix products

are carried out , there results

(51)
AT A “T

In view of Eq. (20) , which v~~f ines the constraint modes , the third f t
term of Eq. (51) vanishes. Moreover, as discussed in Ref . [ 2 ] ,  the fixed—

base modes of a are the solutions of the eigenvalue problem

= Waj ~~~~~~~ 
‘52)

where is the natural frequency of the jth mode , and hence are orthogonal.

Thus, Eq. (51) may be simplified to yield the equations of motion of a

(5 3)

where ~j  and are diagonal matrices whose main diagonal terms are,

respectively, the generalized masses and generalized stiffnesses of a , and

_ 1 A T A

~~~~~~~~ ~o~~22~~

is a V
0 

by N matrix whose columns are the expansion coefficients of a modal

• series representation of the constraint modes. In subscript notation , Eq. (53)

becomes V
S

+ ~~~ q0~ 
= 

k=l ~~~ ~0kj ~~ 
— G

ik ~~~~~~~~ (j = 1, 2,. 
~~~

V
a

) (55)

It may be observed that the equations of motion of the substructure a have

inertia coupling only between shell and substructure.
• U

*) Equation (55) may be recognized as a generalization of Eq. (A8) of Ref. [1].

________________________
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V CONCLU D ING REMARKS

The equations of motion for the transient response of a shell S with

internal structure a are given by Eqs. (42), (43), (53), and (54). It is

important to note that no total system (S + a) modal stiffness matrix is

required in the present formulation, as is required when eigenvalues and

eigenvectors for the entire system are sought (see, e.g., Ref. 121) . It

should also be noted that, in view of the stiffness coupling between S and a

in Eqs . (42 ) and (4 3) ,  the modal mass matrix to be inverted in the solution

of a transient response problem has size V
5 

by V
~

I determined solely by the

number of modes of the shell employed in the solution . Formulations wi th

inertia coupling between shell and substructure require  the size of the modal

mass matrix to be inverted to increase as the total number of modes V increases.

The phys ical stiffness and mass matrices of a, K and N of Eqs. (18) and

(29) ,  respectively,  may be obtained by modifying a finite element computer

code such as SAPIV (Ref . [ 4 ] ) .  The constraint modes may be determined by

means of Eq. (20), or by u t i l iz ing  a solution option avai lable wi th  SAPIV. Hence ,

it is possible to evaluate all of the matrices required in Eqs. (42) and (43)

by using only those rows of K and only those main diagonal terms of N which

correspond to the constrained physical degrees of freedom of a. Once the

expansion coefficients of the constraint modes [Eq . (54)] and the modal

coefficients for the interaction forces and moments [Eq. (43)J have been

evaluated , the constraint modes and the matrices K and M may be eliminated from

the final form of the equations of motion of S and a. This elimination

and the absence of a system modal stiffness matrix will reduce the

computer core (central memory) required to solve a given prob lem.

L

_ _ • __.*_ ~~~~~~~~~~~~~~~ .——‘:.-~— •. ~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~ • _________ -



-—
r~ 

-

~~~~~~~~~~~~~~~~ •~

— 1 6 —

The present formulation will also reduce the amount of computer

time (central processor time) required to set up the matrices in the equations

of motion, as compared with that required by a method employing a system modal

s t i f fness  matrix . By way of example , if the fo rmulation of Re f .  [2]  is used

• for a transient response problem, the matrices

• K~~~~T
CT K T C 

(56)

MC 
= TCT ~ I

C (57)

must be evaluated. The computer time required to evaluate Eq. (56) may be

excessive, especially If the problem under consideration requires many modes

V and/or many physical degrees of freedom of a, and if K is not well banded .

It should be pointed out that the rearrangement of physical degrees of freedom

of a to produce the partit ioning of Eq. (18) usually results in a poorly banded

matrix. For a lumped mass formulation, the computer time required to evaluate

Eq. (57) is not significant compared with that needed to evaluate Eq. (56).

Thus, a reduction in the amount of computer time required to set up the

equations of motion is obtained by the elimination of a system modal

stiffness matrix. A reduction in solution time is also quite probable.

The free—free modes of the shell S may be determined by means of a computer

code such as BOSOR4 (Ref. [5]), while SAPIV may, of course , be used to obtain

the fixed—base modes of the substructure a . If a consistent mass formulation

• Is desired for a, the equations of Sections III and IV may be modified In a

straightforward manner. However, In such a case, SAP IV , which is based on

a lumped mass formulation , must be replaced by a computer code employing a

consistent mass formulation. Although the equations derived in Sections Ill

and IV deal with one piece of internal structure , the presen t method is easily

extended to include any number of internal appendages.

-— — J - __a •_ 
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APPENDIX — GENERALIZED FORCES D1JE TO APPLIED LOADS ON SUBSTRUCTURE

The virtual work due to the known applied nodal loads on substructure a

• may be written as

= (Sx ) ’
~
’ 

R (Al)

in which is the N by 1 mat r ix of virtual displacements and R i’~ the

N by 1 matrix of applied loads. In Ea . (Al ) ,  both the virtual displacements

and the applied loads correspond to the unconstiained physical degrees of

f reedom of a . From Eq. (2 1),  it fol lows that

= + £ (A 2 )

so that Eq. (Al) may be expressed as

tSW = R) + o
T(CT 

“T R) (A3)

The virtual work of Eq. (Al) may be written In terms of generalized

forces as

6w = 6 T 
~ 

(A4 )

whe re ~ is given by Eq. (24)  and

A ~2S1
2 ~~~ 

(A S)

L~J
is a V by 1 matrix partitioned to correspond to Eq. (24). The use of

Eqs. (24) and (A5) in Eq. (A4) results in

• 6W = 6 ~~~ Q~~+ 6 q
’
~~% 

(A 6)

_ _ _ _ _ _ _ _~~~~~ :~~~
——-- - -•.•-—~--—— ~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ _~_~ _;~~

. 
~~~~~~~~~~~~~~~~~~~ • - — - -



________- _ -~~g~~~~ . -~~~~ ~~~ -

— 22 —

Since the variations of the generalized coordinates are arbitrary , a

comparison of Eqs. (A3) and (A6) yields

2 c T
~~

T
~~ (A7)

(A8)

The components of generalized force associated with the generalized coordinates

of the shell S are given by Eq. (A7), and those associated with the

generalized coordinates of the substructure a are given by Eq. (A8).
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